国产欧美日韩网站_亚洲一区二区欧美另类日韩字幕_亚洲无线码一区二区精彩在线观看_国产高清亚洲精品视bt天堂频_超级乱婬片国语对白_制服丝袜中文字幕在线_中文字幕在线男人的天堂_欧洲成在人线视频免费_国产女饥渴熟女91专区九色_有码无码人妻系列专区

洛陽大華重型機(jī)械有限公司網(wǎng)站  咨詢電話:15837930610

破碎機(jī)優(yōu)越生產(chǎn)廠家

專業(yè)生產(chǎn)破碎機(jī)、篩分機(jī)、砂石生產(chǎn)線

洛陽大華重型機(jī)械有限公司

產(chǎn)品百科

當(dāng)前位置:首頁>媒體中心>產(chǎn)品百科>粉碎過程速度解析概述

產(chǎn)品百科

粉碎過程速度解析概述

來源:  發(fā)表時間:2015-05-04 10:47:40  點擊次數(shù):

粉碎過程耗能很多,所以過去對粉碎過程的研究主要是研究功耗問題�,F(xiàn)在這方面的研究已取得較多進(jìn)展。然而,單純功耗理論不是全部粉碎理論,功耗—粒反函數(shù)亦不適于描述整個粉砰過程。因而有必要研究粉碎設(shè)備的給料和排料之間的關(guān)系。

由圖1-9可知,粒度分布的變化是不連續(xù)的,而是具有若干峰形曲線的多組成分布。要研究第1組成的粒子是如何進(jìn)入第2、第3或第n組成的,即要確定各組成間的移動速度,也就是用解析的方法確定速度常數(shù)。這是模似化學(xué)反應(yīng)的考慮方法。

胡基、謝得拉切克和巴斯提出了下列聯(lián)立方程式

式中M(t)為粉磨t時間后粒度x的篩下量,b(i≠j)表示第j組成的粒子粉碎后進(jìn)入第i組成移動的質(zhì)量比例人表示第i組成的粒子粉碎后原粒子的殘留比例;b表示第i組成粒子粉碎成比第i組成小的粒子的移動比例。

方程織(1—43)的解如用行列式表示時,則粒應(yīng)分布等可用矢量表示,而顆粒各粒度組成間的移動速度可用矩陣表示。

這是將粉碎速度論和粉碎產(chǎn)物粒度分布聯(lián)系起來的有效方法。布勞得本特和卡爾考特于1956年提出了如下的粉碎過程的矩陣表示法。

卡爾考持以任意幾何間隔單位。(如篩比)來劃分粒度組成,并把1-a。a-a²,a²-a³,…各間隔的頻率看作列矢量,給料粒度的分布式定義為

為了研究方便,利用上述表示方法,設(shè)粒度分布矢量f={30  20  10},并設(shè)實際粉碎中正好有一半粒子受到粉碎,即{15  10  5}受到了粉碎作用。由表1—9可知,該表最下面總計欄內(nèi)為粉碎前的粒度分布矢量。經(jīng)過粉碎后,各粒級的顆粒向更小的粒級變移,其變移的比例(百分?jǐn)?shù))表示在縱列欄內(nèi)。例如在開始時處于1-a之間的顆粒,經(jīng)粉碎后在1-a間隔內(nèi)殘留6,轉(zhuǎn)移到a-a²間隔的為3,a²-a³間隔的為3,而其余的(3)則轉(zhuǎn)入比a³更小的間隔。其次,原來處于a²-a³間隔的顆粒經(jīng)粉碎后在a-a²間隔殘留4,轉(zhuǎn)移到a²-a³間隔的為2,轉(zhuǎn)移到比a³更小間隙的為(4)。各粒度相互之間的變化對最初的{15  10  5}的比例可表示如下

此矩陣表示了粉碎前后各組成粒子的移動狀態(tài),即表示了粉碎特性,故將其定義為碎裂矩陣B,或稱碎裂函數(shù)�?柨继丶俣˙為如下階梯矩陣

由表1—9可見,粉碎后總計欄表示受粉碎作用的粒子粉碎后的分布。如加上未受粉碎作用的部分,則可得最后一列所示的粉碎后全部粒子的分布,即粉碎作用產(chǎn)生了{30  20  10}—{21  17  12}粒度分布的變化。

如將這一過程用矩陣表示則可寫成下式

式中P為初碎產(chǎn)物的粒度分布列矩陣,I為單位矩陣,S為選擇函數(shù)。

進(jìn)入粉碎過程的各個粒級受到的碎裂見有隨機(jī)性質(zhì),即有的顆粒受破裂多些,有的少些,有的則直接進(jìn)入產(chǎn)品而不受破裂,這就是所謂選擇性或稱概率性。用S表示受到粉碎作用顆粒的比例,即粉碎概率,稱為選擇函數(shù),并假定為對角陣

在本例中S=0.5。

本例P的計算如下

上述是一次粉碎的情況。矩陣模型是把粉碎過程看作一系列川繼發(fā)生的粉碎事件,后一次的給料是前一次的產(chǎn)品,對于二次反復(fù)粉碎則為

因而在進(jìn)行n此反復(fù)粉碎后,則成為

由于缺少提供關(guān)于物料固有碎裂特性的非破壞性試驗方法,所以碎裂函數(shù)B是一個很難用實驗方法確定的兩數(shù)。但是,在給定設(shè)備中粉碎特定物料時,存在一種持有的產(chǎn)品粒度分布形式,它和被碎料的性質(zhì)和對其施加作用力的條件有關(guān)。布勞得本持和卡爾考特于1956年建議采用羅辛—拉姆勒方程的修正式表示,即

式中B(x,y),表示原來粒度為y經(jīng)粉碎后小于x粒徑的質(zhì)量分?jǐn)?shù)。因而有的學(xué)者把破裂函數(shù)B又稱為分布函數(shù)。

對于選擇函數(shù)S來說,與粉碎機(jī)械的粉碎機(jī)理、碎料的性質(zhì)和粒徑等有關(guān)。但是至今還沒有理論解,只是用實驗的方法在特定粒度范圍內(nèi)有如下的關(guān)系

式中x為粒徑,K和α為常數(shù)。